ASSET MANAGEMENT

Core Concepts and Application

MacLean Consulting

What Is Asset Management?

A systematic, data-based, practice focused on maximizing the value delivered by assets

What is the goal of a Community Government?

The City delivers services

Delivering services introduces risk

Delivering services and managing risks costs money

Delivering Services - A Balancing Act

The goal of the City is to deliver services at the minimum sustainable cost

How Asset Management Fits

The City delivers services

It owns assets to deliver services

Owning assets and delivering services introduces risk

Managing assets and risks costs money

Levels of Service

Why are they important?

Common Expectations

Clear Goals

Celebrate success

Focus Improvement

Levels of Service - Getting Specific

What <u>exactly</u> do we deliver?

- ► To who?
- What amount?
- ► When?
- ► What quality?
- How consistently?
- How safe?
- At what cost?

How do we prove it? What are we going to measure? How is that data collected? How do we communicate it?

Levels of Service Framework

Roughly how many services does The City of Yellowknife provide?

Less than 20
20 to 40
40 to 60
60 to 100

What is Risk?

Hazard — Risk = Likelihood x Severity

Risk Matrix

Framework

Asset Risk

Risk = Likelihood x Severity

Asset Risk = Condition x Criticality

Challenges with Risk

Managing risk means spending money so that nothing happens

There is no zero risk scenario

Risk Roles

Administration - Risk Awareness and Management

Identify risks

- Identify controls and costs
- Manage controls
- Council Risk Tolerance
 - Determine acceptable risk levels
 - Approve spending on risk treatment

Cost

Capital

Operations & Maintenance

Life-Cycle Cost

- Acquisition
- Operations & Maintenance
- Renewal/Replacement
- Disposal

Which has the lower life-cycle cost?

Option 1

- 10,000,000 to build
- 200,000 O&M annually
- ▶ 20 year life
- > \$700,000/year

Option 2

- ▶ 20,000,000 to build
- ▶ 100,000 O&M annually
- 30 year life
- \$766,000/year

Which has the lower life-cycle cost?

Option 1

- 10,000,000 to build
- 200,000 O&M annually
- ▶ 20 year life
- > \$700,000/year

Option 2

- ▶ 20,000,000 to build
- ▶ 100,000 O&M annually
- 35 year life
- \$671,000/year

Are gifted assets actually free?

- Acquisition
 - Operations & Maintenance
- Renewal/Replacement
- Disposal

A Question

How often should we replace our graders?

Hourly Cost of Ownership

= Capital Cost + Fuel + Consumables + Maintenance - Residual Value

Operating Hours

When is this smallest?

Capital Cost

Hourly Cost of Capital

= Capital Cost Operating Hours

Cost of Fuel and Consumables

Hourly Cost of Fuel and Consumables

= Fuel + Consumables

Operating Hours

Fuel and Consumables Cost / hr \$200 \$180 \$160 \$140 \$120 \$100 \$80 \$60 \$40 \$20 \$0 20,000 5,000 10,000 15,000 25,000

Cost of Maintenance

Hourly Cost of Maintenance

Maintenance =

Operating Hours

Residual Value

Hourly Residual Value

- Residual Value

Operating Hours

Hourly Cost of Ownership

= Capital Cost + Fuel + Consumables + Maintenance - Residual Value

Operating Hours

Assume 1000 hours/year

@ \$69/hr x 1000 hr/yr = \$69,000/year

@ \$61/hr x 1000 hr/yr = \$61,000/year

Potential cost reduction of \$8,000/year for each unit

The Real World

Data Requirements

- Purchase Cost History
- Historical Unit Hours
- Historical Actual Maintenance costs (in 2023 dollars)
- Historical Residual Values from Auction/Trade-in (in 2023 dollars)

Another Question

How much should we charge for water?

Which part of the Life-cycle typically costs the most?

Acquisition

Operations & Maintenance

- Renewal/Replacement
- Disposal

Which aspect of life-cycle cost carries the most risk to services?

- Acquisition
- Operations & Maintenance

Renewal/Replacement

Disposal

Life-Cycle Cost - City Hall

- Built in 1976 for \$1.9M
- Estimated useful life of 50 yrs, until 2026
- Annual Operations \$306k
- Annual Maintenance \$116k
- Annualized Renewal \$89k
- Estimated replacement cost \$22.1M
 442k/year

Why is replacement such a risk?

We forget its coming

We underestimate the cost

We don't save enough

What was the inflation rate between 2010 and 2020?

Depends on what you are talking about

Inflation

- CPI is not applicable to physical assets
- Different assets inflate at different rates
- Regions inflate at different rates
- Inflation affects replacement cost

Inflation - Rule of 72

Years until cost doubles = $\frac{72}{Inflation\%}$

What is the inflation rate of Graders in Yellowknife?

Unit	Model	Year Acquired	Acquisition Cost
2034-11	140M Grader	2011	\$261,702.00
2036-13	140M2 AWD Grader	2013	\$315,183.75
2037-14	140M2 AWD Grader	2014	\$315,183.75
2038-18	140M3 Motor Grader	2018	\$409,450.00
2033-20	150 AWD Grader	2020	\$403,450.79
NEW	150 AWD Grader	2021	\$418,633.10

City Hall

Built in 1976 for \$1.9M

\$9.1M in 2023 dollars using CPI

Estimated replacement cost \$22.1M

3.4% 5.3%

What if we extend the life?

City Hall

\$22.1M over 50 years - 442k / year

> 25 more years at 5% - 997k / year

▶ 50 more years at 5% - 2,534k / year

What is the estimated service life of water and sewer pipes at installation?

Roughly how much does replacing water and sewer mains cost?

\$800/m
\$1600/m
\$3200/m

▶ \$4800/m

Pipes

> \$3200/m over 50 years - \$64/m/year

> 25 more years at 3% - \$89/m/year

▶ 50 more years at 3% - \$140/m/year

Why do we Replace Assets?

Physical Failure

Functional Failure

Fiscal Failure

Unacceptable risk

Asset Trivia

What is our oldest asset?

Wildcat Café (1937, 86 years old)

What has been the most expensive asset to acquire to date?

Water Treatment Plant (34.4M in 2015)

What is the most expensive asset to replace?

Fiddler's Lagoon

Asset Registry

One source of the truth for all asset related data including

- Service supported
- Year built
- Acquisition Cost
- Current Condition
- Asset Risk
- Estimated Life
- Asset Inflation Rate
- Estimated Future Replacement Cost

Why is an Asset Registry important?

- Build more accurate, farther looking, capital financial forecasts
- ► KNOW that we are financially sustainable
- Prioritize investment based on condition and risk

City of Yellowknife Asset Management Policy

Principals

Service Delivery to Customers Systematic, Data-Based Decisions Minimum Sustainable Cost Risk Management Whole Organization Continuous Improvement

FILED UNDER: The Differences

Source: gapingvoid Culture Design Group

Takeaways

▶ Think in terms of levels of service, risk, and cost

Ask for life-cycle cost information

It's a matter of when, not if, plan for the future

